Surface Science Laboratory - Simon Fraser University

Welcome to our Surface Science website. 

The Surface Science Laboratory is a physics laboratory located at Simon Fraser University in Burnaby, British Columbia.

Our research interests include:

  • Magnetic materials
  • Interfacial and thin-film magnetism
  • Magnetic sensors and memory devices
  • Growth of thin films and superlattices
  • Fabrication of micro and nano devices
  • Designing novel semiconductor structures

Group Photo - 2018

Group Photo - 2014

Group Photo - 2012

Group Photo - 2011

Dr. Erol Girt

B.Sc.  (Faculty of Natural Sciences and
M.Sc.  (Faculty of Natural Sciences and
              Mathematics, Sarajevo
Ph.D. (McGill)

Dr. Bret Heinrich

B.Sc. (Charles)
Ph.D. (Czech. Acad. Sci.)
Fellow, American Physical Society
Fellow, Canadian Institute for Advanced Research

Ken Myrtle

B.Sc. (Simon Fraser University)
M.Sc. (Simon Fraser University)

Tommy Mckinnon

B.Sc. (Hons.) (Simon Fraser University)
Ph.D. (Candidate)

Paul Omelchenko

B.Sc. (Simon Fraser University)
Ph.D. (Candidate)

Nicholas Lee-Hone

Ph.D. (Candidate) (Senior Supervisor David Broun)

Zachary Nunn

B.Sc. (Hons.) Undergraduate (Simon Fraser University)

Christopher Coutts

M.Sc. (Candidate) (Simon Fraser University)

Alex Ensworth

B.Sc. (Hons.) (Simon Fraser University)

Alex DeLong

B.Sc. Undergraduate (Simon Fraser University)

Dr. Monika Arora (Past Student)

Ph.D. (Simon Fraser University)

Dr. Eric Montoya (Past Student)

B.Sc. (Western Washington University)
Ph.D. (Simon Fraser University)

Farnaz Rashidi (Past Student)

B.Sc. (University of Tehran)
M.Sc. (Simon Fraser University)

Charles Eyrich (Past Student)

B.Sc. (Dalhousie University)
M.Sc. (Simon Fraser University)

Dr. Wendell Huttema (Past Postdoc)

B.Sc. (University College of the Fraser Valley)
M.Sc. (Simon Fraser University)
Ph.D. (Simon Fraser University)

Dr. Bartek Kardasz (Past Student)

M.Sc. (Jagiellonian University)
Ph.D. (Simon Fraser University)

Dr. Capucine Burrowes (Past Postdoc)

Dr. Joel Klassen (Past Student)

B.Sc. (Simon Fraser University)


Basics of Nano-thin Film Magnetism

Bretislav Heinrich, Pavlo Omelchenko, Erol Girt, Chapter in Handbook of Spin Transport and Magnetism to be published in 2018 (submitted in July 2016) (34 pages).

Cu diffusion in Ni/Co grain boundaries after annealing

Chris Coutts, Monika Arora, René Hübner, Bret Heinrich, Erol Girt, AIP Adv. 8, 056318 (2018).

Interlayer exchange coupling of FeCoB|Ta|FeCoB

Tommy McKinnon, Pavlo Omelchenko, Bret Heinrich, Erol Girt, J. Appl. Phys., 123, 223903 (2018).

Determination of spin Hall angle and spin diffusion length in beta-phase dominated Tantalum

R. Yu, B. F. Miao, L. Sun, Q. Liu, J. Du, P. Omelchenko, B. Heinrich, Mingzhong Wu, H. F. Ding., Phys. Rev. Materials 2, 074406 (2018).

Exchange coupling in FeCoB/Ru,Mo/FeCoB trilayer structures

T. Mckinnon, Erol Girt, Appl. Phys. Lett. 113, 192407 (2018).

Measurements of exchange coupling through Pt and damping of Py|Pt|[Py|Fe] structure

P. Omelchenko, B. Heinrich, Erol Girt, Appl. Phys. Lett. 113, 142401 (2018).


Roughness-induced domain structure in perpendicular Co/Ni multilayers

N. R. Lee-Hone, R. Thanhoffer, V. Neu, R. Schäfer, M. Arora, R. Hübner, D. Suess, D. M. Broun, E. Girt, J. Magn. Magn. Mater. 441, 283-289 (2017).

Spin Torque Switching in Nanopillars With Antiferromagnetic Reference Layer

Monika Arora, Ciaran Fowley, Tommy McKinnon, Ewa Kowalska, Volker Sluka, Alina Maria Deac, Bret Heinrich, and Erol Girt, IEEE Magn. Lett. 83100605 (2017).

Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

M. Arora, R. Hübner, D. Suess, B. Heinrich, E. Girt, Phys. Rev. B 96, 024401 (2017).

Tunable magnetization and damping of sputter-deposited, exchange coupled Py| Fe bilayers

Pavlo Omelchenko, Eric Arturo Montoya, Chris Coutts, Bret Heinrich, Erol Girt, Sci. Rep. 7, 4861 (2017).

Magnetic properties of Co/Ni multilayer structures for use in STT-RAM

M. Arora, N. R. Lee-Hone, T. Mckinnon, C. Coutts, R. Hübner, B. Heinrich, D. M. Broun, Erol Girt, J. Phys. D: Appl. Phys. 50, 505003 (2017).

Growth of h-BN on copper (110) in a LEEM

Christoph Herrmann, Pavlo Omelchenko, Karen L. Kavanagh, Surface Science, Volume 669, p. 133-139.


Spin transport in tantalum studied using magnetic single and double layers

Eric Montoya, Pavlo Omelchenko, Chris Coutts, Nicholas R. Lee-Hone, Rene Hubner, David Broun, Bret Heinrich, Erol Girt, Phys. Rev. B 94, 054416 (2016)

STT-RAM memory devices

M. Arora, T. Mckinnon, B. Heinrich, E. Girt, C. Fowley, E. Kowalska, V. Sluka, A. M. Deac, Phys. Canada, 72, 87 (2016).

Superfluid density and microwave conductivity of FeSe superconductor: ultra-long-lived quasiparticles and extended s-wave energy gap

Meng Li, N. R. Lee-Hone, Shun Chi, Ruixing Liang, W. N. Hardy, D. A. Bonn, E. Girt, D. M. Broun, New J. Phys. 18, 082001 (2016). 

Where do the atoms go?

Z. Altounian, E. Girt, Magnetics Technology International, 62-65 (2016).


Magnetization Dynamics

E. Montoya, T. Sebastian, H. Schultheiss, B. Heinrich, R.E. Camley, and Z. Celinski, in Magnetism of Surfaces, Interfaces, and Nanoscale Materials, edited by R.E. Camley, Z. Celinski, and R.L. Stamps, 1st ed. (Elsevier B.V., 2016), pp. 113–167.

When Wall-hindered Diffusion Dynamics Becomes Non-Gaussian

Mpumelelo Matse, Paul Omelchenko, Lukas Schertel, Dirk Wiedmann, and John Bechhoefer, in Optics in the Life Sciences, OSA Technical Digest (online) (Optical Society of America, 2015), paper JT3A.47.


Quantum well state induced oscillation of pure spin currents in Fe/Au/Pd(001) systems

Eric Montoya, Bret Heinrich, Erol Girt, Phys. Rev. Lett. 113, 136601 (2014).

Effects of substitution on the exchange stiffness and magnetization of Co films

C. Eyrich, A. Zamani, M. Arora, W. Huttema, D. Harrison, F. Rashidi, D. Broun, B. Heinrich, E. Girt, O. Mryasov, O. Karis, P. Jonsson, M. From, X. Zhu, Phys. Rev. B, 90, 235408 (2014).


Micro magnetic exchange interaction tensor and magnetization reversal of L10 FePt based alloy thin film nano-structures

A. Singh, O. Mryasov, S. Gupta, S. Okatov, K. Gao, E. Girt, IEEE Trans. Magn. 49, 3799 (2013).

Damping in yttrium iron garnet nanoscale films capped by platinum

Y. Sun, H. Chang, M. Kabatek, Y.-Y. Song, Z. Wang, M. Jantz, W. Schneider, M. Wu, E. Montoya, B. Kardasz, B. Heinrich, S. G. E. te Velthuis, H. Schultheiss, and A. Hoffmann, Physical Review Letters 111, 106601 (2013).

Broadband ferromagnetic resonance system and methods for ultrathin magnetic films

E. Montoya, T. McKinnon, A. Zamani, E. Girt, B. Heinrich, J. Magn. Magn. Mater. 356, 12 (2013).


Micro magnetic exchange interaction tensor and magnetization reversal of hcp Co based alloy thin film nano-structures

A. Singh, O. Mryasov, S. Gupta, X. Wang, E. Girt, IEEE Trans. Magn. 48, 3731 (2012).

Enhanced spin pumping at yttrium iron garnet/Au interfaces

C. Burrowes, B. Heinrich, B. Kardasz, E. A. Montoya, E. Girt, Y. Sun, Y.-Y. Song, M. Wu, Appl. Phys. Lett. 100, 092403 (2012).

Interface magnetism of iron grown on sulfur and hydrogen passivated GaAs (001)

B. Kardasz, S. P. Watkins, E. A. Montoya, C. Burrowes, E. Girt, B. Heinrich, J. Appl. Phys. 111, 07C115 (2012).

Spin transport in Au films: An investigation by spin pumping

E. Montoya, B. Kardasz, C. Burrowes, W. Huttema, E. Girt, B. Heinrich, J. Appl. Phys. 111, 07C512 (2012).

Exchange stiffness in thin film Co alloys

C. Eyrich, W. Huttema, M. Arora, E. Montoya, F. Rashidi, C. Burrowes, B. Kardasz, E. Girt, B. Heinrich, O. N. Mryasov, M. From, O. Karis, J. Appl. Phys. 111, 07C919 (2012).


Spin Pumping at the Magnetic Insulator (YIG)/Normal Metal (Au) Interfaces

B. Heinrich, C. Burrowes, E. Montoya, B. Kardasz, E. Girt, Y.-Y. Song, Y. Sun, M. Wu, Phys. Rev. Lett. 107, 066604 (2011).

Spin dynamics and magnetic anisotropies at the Fe/GaAs (001) interface

B. Kardasz, E. A. Montoya, C. Eyrich, E. Girt, B. Heinrich, J. Appl. Phys. 109, 07D337 (2011).

A method for measuring exchange stiffness in ferromagnetic films

E. Girt, W. Huttema, O. N. Mryasov, E. Montoya, B. Kardasz, C. Eyrich, B. Heinrich, A. Y. Dobin, O. Karis, J. Appl. Phys. 109, 07B765 (2011).


Origins of the damping in perpendicular media: Three component ferromagnetic resonance linewidth in Co–Cr–Pt alloy films

Nan Mo, Julius Hohlfeld, C Scott Brown, Erol Girt, Pavol Krivosik, Wei Tong, Adnan Rebei, Carl E Patton, Appl. Phys. Lett., 92, 022506 (2008).

Second Order Anisotropy in Exchange Spring Systems

B. Valcu, E. Girt, A. Dobin, IEEE Trans. Magn. 44, 3554 (2008).

Comparison of near-field FMR probe with pump-probe characterization of CoCrPt media

T. W. Clinton, N. Benatmane, J. Hohlfeld, E. Girt, J. Appl. Phys. 103, 07F546 (2008).


Experimental evidence of domain wall assisted switching in composite media

Erol Girt, A Yu Dobin, Bogdan Valcu, HJ Richter, X Wu, Tomas P Nolan, IEEE Trans. Magn. 43, 2166 (2007).

Microstructure and exchange coupling of segregated oxide perpendicular recording media

Thomas P Nolan, Juliet D Risner, Samuel D Harkness, Erol Girt, Stella Z Wu, Ganping Ju, Robert Sinclair, IEEE Trans. Magn. 43, 639 (2007).

Analytical TEM examinations of CoPt-TiO2 perpendicular magnetic recording media

J. D. Risner, T. P. Nolan, J. Bentley, E. Girt, S. D. Harkness IV, R. Sinclair, Microsc. Microanal. 13, 70 (2007).

Reversible susceptibility studies of magnetization switching in FeCoB synthetic antiferromagets

C. Radu, D. Cimpoesu, E. Girt, G. Ju, A. Stancu, L. Spinu, J. Appl. Phys. 101, 09D109 (2007).


Influence of oxide on the structural and magnetic properties of CoPt alloy

E. Girt, S. Wu, B. Lu, G. Ju, T. Nolan, S. Harkness, B. Valcu, A. Dobin, J. D. Risner, M. Munteanu, R. Thangaraj, C-H. Chang, T. Tran, X. Wu, O. Mryasov, D. Weller, S. Hwang, J. Appl. Phys. 99, 08E715 (2006).


Ultrathin Magnetic Structures IV: Applications of Nanomagnetism

B. Heinrich and J. A. C. Bland, editors Springer-Verlag, Berlin/Heidelberg (2005).

Stripe domain formation in anti-ferromagnetically coupled FeCoX layers

E. Girt, A. Dobin, C. Brucker, H. J. Richter, J. Appl. Phys. 97, 10N509 (2005).


Magnetization process in exchange biased MnPd/Fe bilayers

P. Blomquist, K. M. Krishnan, E. Girt, J. Appl. Phys. 95, 8487 (2004).

A Simple Slope Model for Oriented and Isotropic Longitudinal Media

H. J. Richter, G. M. Sandler, E. Girt, IEEE Trans. Magn. 40, 3545 (2004).


Dynamic exchange coupling in magnetic bilayers

B. Heinrich, Y. Tserkovnyak, G. Woltersdorf, A. Brataas, R. Urban, and G. Bauer
Physical Review Letters 90, 187601 (2003).

Antiferromagnetically coupled perpendicular recording media

Erol Girt, Hans Jürgen Richter, IEEE Trans. Magn. 39, 2306-2310 (2003).

Formation, structure and hard magnetic properties of Sm2Fe(17-x)CoxCy compounds

Z. Altounian, Xu Bo Liu, Er. Girt, J. Phys.: Condens. Matter 15, 3315 (2003).


Magnetic recording demonstration over 100 Gb/in^2

Zhengyong Zhang, Yong Chang Feng, Tom Clinton, Gazy Badran, Nan-Hsiung Yeh, Giora Tarnopolsky, Erol Girt, Mariana Munteanu, Sam Harkness, Hans Richter, Tom Nolan, Rajiv Ranjan, Steve Hwang, Gary Rauch, Mai Ghaly, David Larson, Eric Singleton, Vladyslav Vas\\\'ko, Joyce Ho, Frank Stageberg, Vee Kong, Kristin Duxstad, Steven Slade, IEEE Trans. Magn. 38, 1861-1866 (2002).

Simplified analysis of two-layer antiferromagnetically coupled media

HJ Richter, Er Girt, H Zhou, Appl. Phys. Lett., 80, 2529 (2002).

Magnetic interactions and reversal behavior of Nd2Fe14B particles diluted in a Nd matrix

DC Crew, Er Girt, D Suess, T Schrefl, KM Krishnan, G Thomas, M Guilot, Phys. Rev. B. 66, 184418 (2002).

How anti-ferromagnetic coupling can stabilize recorded information

H. J. Richter,  E. Girt, IEEE Trans. Magn. 38, 1867 (2002).

Different designs and limits of longitudinal magnetic recording media

Er. Girt, H. J. Richter, Mariana Munteanu, Ed Yen, Samuel D. Harkness, Richard M. Brockie, J. Appl. Phys. 91, 7679 (2002).

Crystallographic stacking faults in antiferromagnetically coupled media

C. Zambon, L. Holloway, W. J. Antel Jr., H. Laidler, E. Girt, S. D. Harkness, J. Appl. Phys. 91, 7697 (2002).


Gilbert damping in single and multilayer ultrathin films: role of interfaces in nonlocal spin dynamics

R. Urban, G. Woltersdorf, and B. Heinrich
Physical Review Letters 87, 217204 (2001).

Geometrical and Compositional Structure at Metal-Oxide Interfaces: MgO on Fe(001)

H. Meyerheim, R. Popescu, J. Kirschner, N. Jedrecy, M. Sauvage-Simkin, B. Heinrich, and R. Pinchaux
Physical Review Letters 87, 076102 (2001).

Coercivity limits and mechanism in nanocomposite Nd-Fe-B alloys

Er Girt, Kannan M Krishnan, G Thomas, E Girt, Z Altounian, J. Magn. Magn. Mater. 231, 219 (2001).

Optimization of magnetic properties of nanostructured Nd-Fe-B: approaching ideal Stoner-Wohlfarth behaviour

E. Girt, Kannan M. Krishnan, G. Thomas, Scr. Mater. 44, 1431 (2001).

Recording potential of anti-ferromagnetically coupled longitudinal media

H.J. Richter, Er. Girt, IEEE Trans. Magn. 37, 1441 (2001).

Coercivity, time dependence and reversible magnetization in Nd rich Nd-Fe-B alloys

R. C. Woodward, N. T. Gorham, R. Street, David C. Crew, E. Girt, Kannan M. Krishnan, IEEE Trans. Magn. 37, 2493 (2001).


Nanocomposite Nd-rich Nd–Fe–B alloys: Approaching ideal Stoner–Wohlfarth type behavior

Er Girt, Kannan M Krishnan, G Thomas, Z Altounian, Appl. Phys. Lett., 76, 1746 (2000).

Approaching the theoretical coercivity of Nd2Fe14B: Microstructural evaluation and interparticle interactions

Er. Girt, Kannan M. Krishnan, G. Thomas, Z. Altounian, M. Dikeakos, J. Appl. Phys. 88, 5311 (2000).

Structural and magnetic properties of Nd2Fe(17-d)Ga(d) (d < 2)

E. Girt, M. Guillot, I. P. Swainson, Kannan M. Krishnan, Z. Altounian, and G. Thomas, J. Appl. Phys. 87, 5323 (2000).

Exchange biasing and interface structure in MnNi/Fe(Mo) bilayers

Ning Cheng, Kannan M. Krishnan, E. Girt, R. F. C. Farrow, R. F. Marks, A. Kellock, J. Appl. Phys. 87, 6647 (2000).


Anomalous thermal expansion in Nd2Fe17-xGax (x = 0 - 2)

E. Girt, Z. Altounian, I. P. Swainson, Kannan M. Krishnan, G. Thomas, J. Appl. Phys. 85, 4669 (1999). 


Origin of Fe substitutions in Nd2Fe(17-d)Xd

Er Girt, Z Altounian, Phys. Rev. B, 57, 5711 (1998).

Fe-substitution in Nd2Fe(17-d)X(d)C0.3 (X = Al, Ti, V, W and d = 0, 0.5)

Er. Girt, Z. Altounian and D. H. Ryan, J. Magn. Magn. Mater. 177-181, 982 (1998).


Structural properties of Nd2Fe(14-d)Al(d)B (d = 0, 0.5)

Er. Girt, Z. Altounian, I. P. Swainson, C. Lupien and Jun Yang, Physica B 241-243, 651 (1997).

Anisotropic sintered Sm2(Fe,M)17N(x) magnets made by rotational alignment

J. Yang, Ou Mao, Er. Girt, Z. Altounian and J. O. Ström-Olsen, Appl. Phys. Lett. 70, 1176 (1997).

The influence of the enthalpy of mixing on the Fe-substitution in Nd2Fe16.5X0.5 (X = Al, Ti, Nb, W)

Er. Girt, Z. Altounian, I. P. Swainson, Physica B 234, 637 (1997). 

Structural and magnetic properties of Nd2Fe(17-d)Cr(d) (d= 0, 0.5, 1, and 1.9)

Er. Girt, Z. Altounian, Jun Yang,  J. Appl. Phys. 81, 5118 (1997).


Neutron diffraction study of Fe substitutions in Nd2Fe17-dXd (X = Al, Si, Ga, Mo, W)

Er. Girt, Z. Altounian, Ming Mao, I. P. Swainson and R. L. Donaberger, J. Magn. Magn. Mater. 163, L251 (1996).

Formation of Nd(Fe1-yCoy)2 in rapidly quenched Nd13.75(Fe1-xCo)80.25B6 (x = 0 - 0.5) alloys

Er. Girt, M. Koknaeva, Z. Altounian, J. Appl. Phys. 79, 4833 (1996).


Hydrogen-induced changes in temperature dependence of the resistivity in Zr-Fe metallic glasses

Kokanovic, B. Leontic, J. Lukatela, S. Resetic, Er. Girt, Solid State Commun. 94, 217 (1995).

Investigation of the relaxation process of early metastable states of the Fe40Ni40Si14B6 system

Egvin Girt, Redžep Baltic, Erol Girt, Gordana Kneževic, Tatjana Mihac, Fizika A 4, 3, 599 (1995).


Ultrathin Magnetic Structures I: An Introduction to the Electronic, Magnetic and Structural Properties

J. A. C. Bland and B. Heinrich, editors
Springer-Verlag, Berlin/Heidelberg, 2005

X-ray structural studies of nitrogen diffusion in Dy2Fe17

Er. Girt, Z. Altounian, X. Chen, Ming Mao, D. H. Ryan, M. Sutton, J. M. Cadogan, J. Appl. Phys. 76, 6038 (1994).

The effect of group IV B/V B/VI additions on the magnetic properties of Sm(2+d)Fe17 carbonitrides

X. Chen, Er. Girt, Z. Altounian, J. Appl. Phys. 75, 5997 (1994).


Ultrathin metallic magnetic films: magnetic anisotropies and exchange interactions

B. Heinrich and J. F. Cochran
Advances in Physics 42, 523 (1993).


The measurements of early metastable states in amorphous strips

E. Girt, Er. Girt, G. Kneževic, R. Baltic, R. Simeunovic, Meas. Sci. Technol. 3, 458 (1992).


Magnetic anisotropies and exchange coupling in ultrathin fcc Co(001) structures

B. Heinrich, J. Cochran, M. Kowalewski, J. Kirschner, Z. Celinski, A. Arrott, and K. Myrtle
Physical Review B 44, 9348 (1991).


Ferromagnetic and antiferromagnetic exchange coupling in bcc epitaxial ultrathin Fe (001)/Cu (001)/ Fe (001) trilayers

B. Heinrich, Z. Celinski, J. Cochran, W. Muir, J. Rudd, Q. M. Zhong, A. S. Arrott, K. Myrtle, J. Kirschner, B. Columbia, and C. V. A. Is
Physical Review Letters 64, 673 (1990).


Structural and magnetic properties of ultrathin Ni/Fe bilayers grown epitaxially on Ag(001)

B. Heinrich, S. Purcell, J. Dutcher, K. Urquhart, J. Cochran, and A. Arrott
Physical Review B 38, 12879 (1988).


Ferromagnetic-resonance study of ultrathin bcc Fe(100) films grown epitaxially on fcc Ag(100) substrates

B. Heinrich, K. Urquhart, A. Arrott, J. Cochran, K. Myrtle, and S. Purcell
Physical Review Letters 59, 1756 (1987).

Two-chamber Sputter System

Kurt Lesker cluster deposition system: This system has two sputter process chambers interconnected with a loadlock chamber for deposition onsubstrates up to 6 inches in diameter. The sample manipulation, etching, heating and film deposition...

Molecular Beam Epitaxy

The molecular beam epitaxy (MBE) system allows the atomic layer-by-layer deposition of high quality thin films in ultrahigh vacuum conditions. Our current focus is on the growth of ferromagnetic metal and normal metal heterostructures for s...

Deposition and Etching Cluster System

Intlvac cluster deposition system: This system has three process chambers and a load lock chamber interconnected with a distribution chamber for deposition on substrates up to 4 inches in diameter. The sample is moved to the process chamber...

Ferromagnetic Resonance

Ferromagnetic Resonance (FMR) is a spectroscopic technique used to probe the magnetic properties of magnetic materials. We currently use this system to investigate magnetostatics, spin dynamics, and spin transport. This system uses an An...

In-Plane MOKE

A computer controlled Magneto Optic Kerr Effect (MOKE) system for measuring the component of magnetization parallel to the film plane in magnetic fields up to 0.3 T at room temperature....

Polar MOKE

A computer controlled Magneto Optic Kerr Effect (MOKE) system for measuring the component of magnetization perpendicular to the film plane in magnetic fields up to 1 T at room temperature....

Magneto-optical Kerr Microscopy

Imaging in this microscope is based on the rotation of the plane of polarization of linearly polarized light upon reflection from a magnetic surface. Arbitrary magnetic fields can be applied during observation so that domain nucleation and ...

Miscellaneous Equipment

1) 4-probe resistance measurement stage 2) Magnetic field annealing stage (Tmax=5000C, Hmax = 0.4 T) 3) Magnetoresistance measurement stage (Hmax= 0.6 T)...

User Facilities

1) X-ray Diffraction Labis located in the physics department at SFU. Structral properties of our films are measured with the Panalytical X\'Pert3 X-ray diffractometer. We upgraded the instrument with: 1)components for thin-film in-plane XRD...

Spin pumping and spin transport

We demonstrated that there is an efficient transfer of spin momentum across the insulating magnetic layer (IML)/normal metal (NM) interface, even though the conduction electrons in NM are fully reflected at the IML/NM interface. The spin pu...

Exchange stiffness in ferromagnetic films

An antiferromagnetically coupled FM/NM/FM (FM = ferromagnet, NM = normal metal) trilayerstructure responds to an external magnetic field by the formation of a magnetic-moment springwithin the FM layers. We showed that the exchange stiffnes...

Solid state magnetic memory (STT-MRAM)

STT-MRAM is one of the most promising emerging non-volatile memory technologies due to its high recording density, fast write/read speed (a few nanoseconds), unlimited endurance, excellent scalability, and low power consumption.We are inter...